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Using six-surfaced cells the space-derivative terms in the Lagrangian equations are reduced 
to simple algebraic expressions, that require volume and surface variables. In order to preserve 
the thermodynamic relation for internal energy for each cell, the surface magnitudes are 
chosen from the neighbor cells in the following way: the velocity from the volume velocity of 
the cell “ahead” while the pressure from the volume pressure of the cell “behind.” Together 
with a simple predictor-corrector scheme a stable (Courant number 0.5) and fast code may 
be written. Although it is less accurate than other methods, it exhibits some interesting 
features: it retains the advantages of sided methods for imposing boundary conditions, and it 
preserves the simplicity of the explicit schemes (a fact particularly useful to vectorize it). 
0 1990 Academic Press, Inc. 

1. INTRODUCTION 

For solving multidimensional problems several numerical methods are based on 
a network of deformable volume elements (usually a six-surfaced cell in 3D 
problems). Among these kinds of multidimensional codes are: YAQUI [ 1 ] in 2D, 
and BAAL [2] or SALE-3D [3] for 3D problems. In all these codes velocities are 
assigned to the cell vertices while pressure, density, etc. are centered. When a 
surface value is needed, an appropriate mean value over two or more adjacent cells 
is calculated. In this work a method that uses values from only one neighbor cell 
(but a different cell for a different variable) is reported. The assignment is done in 
such a way that an underlying physical principle of compressible fluids is preserved: 
the thermodynamics relation for internal energy. 

2. SEMIDISCRETE EQUATIONS 

Let us consider an inviscid compressible fluid. Integrating the Euler equations 
over a volume V whose surface S is moving with the fluid (Lagrangian formulation) 
we get 
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dP 
dt 

= -fdSp 

dU -=- 
dt P dS.vp, (3) 

where M, P, and U are the total mass, momentum, and energy contained within S 
at time t, v is the velocity, and p the pressure (dS is outward from V). Accordingly, 
the evolution of V is written 

Kc dSv 
dt ” P (4) 

For a three-dimensional flow we shall use the following conventions: 

- The cell (i, j, k) is the volume element limited by the vertices 
(i - i, j- 4, k - $), (i + 4, j- 4, k - i), etc. (see Fig. 1) in the logical coordinate 
space (L r, ~3 C41. 

- Vertices are numbered from 1 to 8 according to Fig. 2. 
- The six sides of each hexahedral cell are named with the letters a through 

f (see Fig. 2). 
- For numerical convenience S,, Sb, and S, are chosen inward to V, while 

Sd, S,, and S, are outward from V, i.e., 

S, = i(r, -rl) x (rs - r3) (5.1) 

S,= f(r, - rz) x (r, - r4) (5.4) 

where r is the physical coordinate. 

FIG. 1. Lagrangian coordinate network. 
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FIG. 2. Definition of vertices and surfaces for the cell (i, j, k). 

- The mass density, velocity, and specific energy for the cell (i, j, k) are 
defined as Pt,j,k= Mi,j,kIVi,j,k, Vi,j,k= Pi,j,kIMi,j,k and ei,j,k= Ui,j,kl”i,j,k, 

respectively. The specific internal energy is &i,i,k = ei,& - +v:~,~, and the pressure is 
given by an equation Of state pi, j,k = P(pi,j,k, &i, j,k). 

- Pressures and velocities are assumed constant along each cell surface. 

Under these assumptions the following semidiscrete equations may be written 

(6) 

(7) 

dV 
z- 

- --V,‘S,--~.S~-V,‘S,+Vd’Sd+V;Se+Vf’Sf, 

where M, v, e, and V indicate M, j,k, vi, j,k, e, j,k, and vi, j,k, respectively. 
For the quantities associated with the surfaces a compatible choice (in the sense 

described below) is 

and 

v,*s,=v.s,, V6.Sb=V.Sb, v;s,=v-s, (9) 

Pd=Pe=Pf =P (10) 

(that means vd-sd=vi+l,j,k .Sd, pa=pi-l,j,kr etc.). Then, Eqs. (6)-(8) reduce to 
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dV 
dt- - -v~(s,+s,+s,)+v,~s,+v,.s,+v,.s, 

Note the following properties: 

- When Eqs. (11) to (13) are summed over the entire mesh only boundary 
terms remain. 

- The specific internal energy becomes 

(14) 

(note that S, + Sb + S, = Sd + S, + Sf). Equations (9) and (10) were called a com- 
patible choice because they lead to Eq. (14). 

Finally, for updating vertices positions, a possible choice is 

dr, 
xc vi, j,k (15.1) 

As it will be shown later, physical or geometrical reasons may require a better 
definition of vertices velocities (for instance, an appropriate mean value over 
neighbor ceils). For each cell (i, j, k) three equations of motion (15.1), three of 
momentum (ll), one of energy (12), and one for the volume (13) are solved (the 
surfaces are calculated through Eqs. (5.1)-( 5.6)). 

3. BOUNDARY AND INITIAL CONDITIONS. TIME INTEGRATION METHOD 

Because of the “asymmetric” choice, Eqs. (9)-(lo), the propagation of 3D waves 
in a uniform grid was studied. Let us consider a gas at rest with pressure p. and 
density pO. The space is divided into N Cartesian cells of equal mass M0 and volume 
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V, = Ax A y AZ. For a small perturbation, assuming v = 6v, p = p. + iip and V= 
V,+SV, Eqs. (11) and (13) become 

M d(dv) 
’ dt -=sS,6p,+S~~p~+Sc~pPc-(S~+Se+Sf)~p (16) 

(note that 6S, + 6Sb + 6S, - 6Sd - 6S, - SS, = 0) 

d(dv) -= -(s,+s,+s,)~6v+s,.6v,+s,.6v,+s,.6v, dt (17) 

Deriving Eq. (17) and neglecting second-order terms (i.e., terms proportional to 
(dS/dt) .6v cc v .6v x (c?v)~), 

d2(6V) -= -(s.+s,+s,).~ dt2 

+s d(dv,) 
.T+Se 

d(dve) @v,) 
d -7+sy.- 

dt * 

For a y-law gas, Eq. (14) leads to 

and, using Eq. ( 16), Eq. ( 18) becomes 

d’(aPi,j,k) YPo 
dt2 =z 

dPi- I,j,/c -2dPi.j.k + aPi+ 1,j.k 
kW2 

+6PLj,k-l-26pi,j,k+5Pi,j,k+l 

W2 1 9 

(18) 

(19) 

(20) 

where S, = Sd= ( Vo/Ax)i, etc., and definitions (9)-( 10) were used. Equation (20) 
indicates that pressure waves propagate in any direction at the same speed c, = 
(rPolPo)“2* 

For a general grid it is not possible to obtain an analytical result like Eq. (20). 
Anyway, some properties may be inferred. Note that Eqs. (11) to (13) are consis- 
tent; however, the wave equation does not reduce to the zero order differential 
equation in a non-uniform grid. For a one-dimensional case, a truncation error 
analysis gives an effective sound speed 

(21) 

where 6a, is the initial width of the ith cell (at t = O), 
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A similar behavior is observed in other methods. For example, the one-dimen- 
sional lagrangian form of the method of Ref. [4] has an effective sound speed 

cz=ypO bai-l+26ai+6ai+~ 
s 

PO ( > 46ai ’ (22) 

In this case, a way to overcome the problem is by choosing a different definition 
for the position of the cell center (the centers determine the vertices masses used in 
[4]). For a 1D problem it seems to be easy, but for a 3D case it is a difficult task. 

Using the “asymmetric” choice it seems to be impossible to reduce the wave 
equation to a proper form even for a 1D case. Anyway, note that the error is 
determined by the initial mesh. That is, it is possible to estimate the error a priori. 
The reduction of the error has to be considered when constructing the initial mesh. 

In conclusion, the “asymmetric” method treats waves with second-order accuracy 
on a regular mesh, but loss accuracy in a non-uniform mesh. A further discussion 
on the asymmetric behavior and the accuracy for one-dimensional problems will be 
given in the examples of Section 6. 

The boundary and initial conditions for the semidiscrete equations are the same 
as those for the differential equations. For example, for barotropic fluids in fixed 
domains it is well known that there is at most one solution of the differential equa- 
tions provided initial conditions for v and p are given at any point together with 
the boundary condition v on the contour at any time (provided no fluid is crossing 
the boundary). The same rule applies to the semidiscrete equations. Giving v on the 
boundary, the problem is solved. In particular, the pressure on the boundary is 
calculated from the results: giving for the “first” cell v = v,(t), the pressure pa that 
is necessary to maintain v . S, = v, . S,, i.e., p, is calculated from the momentum 
equation (1 1 ), while giving vd = vd( t) for the “last” cell, the pressure pd is obtained 
from the energy equation (12) because pd = p. Note that no phantom zones are 
needed. This is an advantage over centered methods that need phantom zones, 
because in the latter case, by choosing different boundary schemes it is possible to 
obtain different solutions [S]. Actually, this advantage is a characteristic of sided 
methods (e.g., [6]). 

Regarding the time integration method, a necessary (but not always sufficient) 
condition is that it must provide a stable solution to Eqs. (16), (17), and (19). 

Assuming a perturbation Sp = 6p, exp( at) exp( ikx) and defining q = exp(a At) 
and A* = 2(c, dt/d.u)* [l - cos(k Ax)], it follows for an explicit scheme that 

l~l*=l+A*>l (23) 

and therefore it is always unstable; while, for a fully implicit method 

i.e., it is unconditionally stable. 
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After the explicit method, the simplest one is a predictor-corrector method as 
follows: a guess x;t+’ (predictor) of x”+’ (x”+’ refers to any physical variable like 
pressure, velocity, etc., evaluated at the time t + dt) is obtained explicitly from the 
values x” at time f, using 

x;t+ ’ = xn + h(x”) At, (25) 

where 

h(x) = dxldt (26) 

and, finally, xn + ’ is calculated from xE+ ’ using 

X n+l=xn+h(x;;+l)At. (27) 

For the perturbation described above, it follows from Eqs. (16), (17), and (19) that 

/#=1-A2+A4 (28) 

and the method is stable provided A < 1, that means CFL < 0.5. This criterion was 
used in the examples of Section 6 and no any further time step control was added. 
For all cases the calculation was started with the At given by the above condition. 

4. TENSOR ARTIFICIAL VISCOSITY 

Following Schulz [7] a tensor artificial viscosity is defined from three “one- 
dimensional” artificial viscosities in three different directions (S,, S,, and S,) as 

qd = 
1 
C2PC~d~(Vd-V)12 if fi,.(v,--v)<O 
0 if li,.(v,-v)>O, (29) 

where qd is the artificial viscosity term on face d, c is a dimensionless constant near 
unity, and Ad = Sd/lSdl. Similar definitions are used for qe and qr (q. is equal to qd 
of cell (i- 1, j, k), etc.). 

Including the artificial viscosity, Eqs. (11) and (12) become 

and 

+ qa% + 4tsLl+ 4sc - qdsd- qese- q,s, (30) 

M$=v.(p.S.+p,S,+p,S,)-p(v,.S,+v,.S,+vf.Sf) 
+(4~S,+qbSb+qcS~).V-qdSd'Vd-qeSe.V,-qfs~'Vf (31) 
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The evolution of the internal energy is 

M$= -p~-q~s,.(v,-v)-qese’(v~-v)-qfsf.(v,.-v). (32) 

Note that the dissipation term introduced by the artificial viscosity is defined 
positive. 

Another interesting feature is that only the rate of change of the volume that is 
caused by one surface overtaking another surface is considered rather than the total 
rate of change of volume [S]. 

Although this tensor artificial viscosity produces some errors in shocks crossing 
discontinuities (similar to that described in [9]) and they must be taken into 
consideration for a general application, in the examples of this work, it was not 
necessary to make any correction. 

5. REDUCTION TO ONE-DIMENSIONAL EQUATIONS 

By choosing an appropriated cell structure it is possible to reduce the 3D equa- 
tions to the 1D case. For example, consider a 1D problem with cylindrical 
geometry. Using a 3D grid in a Cartesian coordinate system as described in Fig. 3, 
as a result of the symmetry it is clear that 

and 

S;V,=Sb.Vb~Sb.V; sf.vf=s,.v,~sc.v; s, = Sf (33) 

Pb=Pe=P; P,=Pf -p; qb=qe; 4, = 9, (34) 

FIG. 3. Cell structure for calculating one-dimensional cylindrical problems using Cartesian 
coordinates. 
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Then, the momentum equation reduces to (only the Cartesian x component is 
different from zero, i.e., the “radial” component) 

(note that S,+ S, = S, + S,; S, = S,$; v = uft; etc.) Further, when cp 4 1 (see Fig. 3) 
then q,( acp) < qa, qd. Therefore, the above equation is written as 

The energy equation becomes 

and Eqs. (13), (15.1), and (29) reduce to 

dr,-dr, ---=v 
dt dt 

2p(u, - u)’ if vd<v 
qd= 0 if vd > v. 

(39) 

(40) 

Note that because of the use of a tensor artificial viscosity a proper expression for 
the sum of the “radial momentum” was obtained [7]; i.e., summing Eq. (36) over 
the entire mesh, the artificial viscosity vanishes completely from the equations as 
long as the q’s are taken to be zero on the boundaries. This fact puts into evidence 
the difference between the tensor artificial viscosity and the scalar viscosity given in 
ClOl- 

Finally, if an appropriate scaling on the mass and the volume is performed, it is 
easy to demonstrate that Eqs. (36) to (40) are valid for any 1D problem by defining 

Sa=rT, (41) 

where m = 0, 1, 2 for planar, cylindrical, or spherical geometry, respectively, and the 
mass and volume are per unit area, per unit length and unit angle, and per unit 
solid angle, respectively. 

6. NUMERICAL EXAMPLES 

In order to test the method several problems from 1D to 3D were solved. In all 
the examples the predictor-corrector method of Section 3 with CFL = 0.5 was used, 
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the artificial viscosity parameter was taken as c = 1.3, and the gas constant y = 1.4. 
Programs (except the 28,000 mesh point example) were run in a personal computer 
PC-XT (8088, 10 Mhz, 640 Kbytes, with math coprocessor). Running time and 
memory requirements (in single precision, including all temporary storage needed) 
will be given for all the examples. 

The first example is the same shock tube problem as Sod [ 111. The tube extends 
from x = 0 to x = 1 and is divided into 100 computational cells uniformly dis- 
tributed. In Fig. 4, pressure, density, and velocity are displayed as a function of the 
position at t = 0.15 (cycle 77) when the shock is located at x r 0.75. 

Memory requirements are 40 bytes per cell and the running time per time step 
(cycle) was 0.38 s. Note that this time (obtained on a PC) is comparable to the 
running times given in [ 111 on a CDC 6600, and also to that from the MUSCL 
code [12] on a IBM 370/158. 

The second example is the cylindrical propagation of a shock wave generated by 
an instantaneous energy release on a rigid cylindrical wall [ 133. An equally spaced 
mesh with 70 cells was used. At t = 0 the energy per unit length of the cylinder, Eo, 
is deposited into the “last” cell (i.e., the closest to the wall) as internal energy, 
density is taken as p,, and velocities are set to zero (the same dimensionless 
variables of Ref. [ 131 are used). 

The boundary condition is u = 0 at any time along the cylinder wall (rigid wall). 
In Fig. 5, pressure, density, and velocity are shown as a function of the radius at 
the time the shock reaches the radius R z 0.1 (t = 0.05, cycle 286). Memory 
requirements are 40 bytes per cell and the running time is 0.21 s per cycle. 

Due to the asymmetric form of Eq. (36) (S, multiplies the pressure difference 
while Sd does not appear) the mesh was inverted, i.e., the S,‘s were taken as the 
outer side of the cells. To do so a minus sign is added to definition (41) (because 
S, = -S,a) and inequalities in Eq. (40) are inverted (because Ad= -a). In Fig. 6a 
the pressure is shown at t = 0.05. Although a comparison with Fig. 5a gives a 
reasonable agreement (maximum relative differences of a few percent), in the 
second case some oscillations appear as a consequence of the asymmetric choices. 
Numerical experiments suggest that when a shock propagates from S, to S, it 
exhibits behavior better than that observed in a propagation from S, to Sd. 

Also a non-uniform mesh was tested. The pressure shown in Fig. 6b was obtained 
with an initial mesh given by x4+ i = l/N+ x4, where N = 70 is the number of cells 
and a = 1.5. The agreement is excellent (compare to Fig. 5a). 

Working with only 20 mesh points, good results were obtained (see Fig. 6~). The 
main difference is that, in this case, the shock is slower than the case N= 70: it 
reaches the position R z 0.1 at t = 0.0545. 

All three cases of Fig. 6 provide essentially the same results with relative dif- 
ferences not bigger than 10%. 

The third example is the flow at Mach 3 through a tunnel with a wedge. The 
height of the tunnel in the narrow part is H, the horizontal length of the wedge is 
2H, and the wedge angle is 15”. The geometry and the initial mesh with 910 cells 
(65 x 14) are depicted in Fig. 7. Initially the gas has a uniform pressure (p,) and 
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2H , IIH rl 

FIG. 7. Initial mesh (65 x 14) for the flow at Mach 3 through a tunnel containing a wedge. Wedge 
angle 15”. 

at t = 0 the flow is impulsively started everywhere with an horizontal velocity u = 3 
from right to left (Mach 3, c, = 1). 

Because of the use of a lagrangian method, the mesh is moving through the 
tunnel and some words about boundary conditions on the tunnel are in order. On 
the upper part it is easy to impose a free slip condition. On the lower boundary, 
cell vertices are forced to move on the boundary and the cells climb obstacles as 
depicted in Fig. 8. For these boundary cells, only the tangential component of the 
momentum equation is retained, projecting Eq. (30) onto the tangential direction. 
For each cell, the tangential direction (f, see Fig. 8) is defined perpendicular to Sb 
and it may not coincide with the actual shape of the boundary. With this choice, 
S, . v = 0 and therefore pb is not needed. After each cycle a new tangential velocity 

qJb Ia *= 
FIG. 8. A Lagrangian cell climbing an obstacle. The tangential direction f is defined perpendicular 

to Sb. 
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FIG. 9. (a) Mesh at t= 3.5 H/c, for the flow at Mach 3 through a tunnel containing a wedge. 
(b) Shock position: o cells with artificial viscosity qd + 4. > O.lp,, and + cells, where qd + q. > O.Olp,. 

is obtained, and, from this, the corresponding tangential coordinate. The Cartesian 
components are calculated from the new tangential direction defined by the new 
vertices positions. The boundaries at the left and right sides move at a constant 
velocity v = 3 from right to left. 

In Fig. 9a the mesh is shown at t = 3.5 H/c, (cycle 209) when practically the 
entire mesh has crossed the obstable. The shock position and its reflections are 
clearly depicted in Fig. 9b where cells with artificial viscosities qd + qe > 0.1~~ and 
qd + qe > 0.01 pm are shown. Memory requirements are 57 bytes per cell and the 
running time was 7.7 s per cycle. 

The last example is a 3D version of the second example. Figure 10 shows the 
initial mesh with 2000 cells (20 x 20 x 5) forming a pseudo-polar grid where i is the 
“radial” index, j the “azimutal” index, and k the “axial” index. The height of 
the cylinder is taken equal to its radius. 

As in the second example, at t = 0 the energy per unit length of the cylinder, E,,, 
is deposited uniformly into the cells closest to the wall as internal energy, density 
is taken as pO, and velocities are set to zero. The boundary condition is v = 0 at any 
time along the cylinder wall (rigid wall). Initial volumes are calculated from node 
positions [ 141. Finally, Eqs. (13), (15.1), (30), and (31) are solved in Cartesian 
coordinates. 
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FIG. 10. Initial mesh (20 x 20 x 5) for the three-dimensional version of the cylindrical propagation of 
a shock. 

Figure 11 shows the mesh at t = 0.0545 (cycle 61). As can be seen from the 
figure, there is a notable mesh distortion. This is due to the improper election of 
the vertices’ velocities (Eq. (15.1)). This effect may be understood by looking at 
Fig. 12. In this case, a simple prescription may be done: replacing Eq. (15.1) by 
another containing an appropriate mean value, for example, 

dr, 1 
x=2 (Vi,j,k+Vi,j-I,k)' (42) 

FIG. 11. Part of the mesh at t = 0.0545 for the cylindrical propagation of a shock showing the 
deformation produced by an improper definition of vertices velocities. 
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4,’ 

x, 

. . 
FIG. 12. Schematic demonstration of the cell distortion of Fig. 11 when the vertices velocities are 

taken as the cells velocities. 

Figure 13 shows the mesh at the same time obtained using the above equation: the 
mesh distortion has disappeared. 

It is important to note that the only difference between the solutions represented 
by Figs. 11 and 13 are the vertices’ positions: the rest of the physical variables do 
not suffer from this distortion; i.e., the distortion does not affect seriously the results 
and/or the stability. 

Figure 14a shows the mean density for each value of the “radial” index i as a 
function of R. For each i, the mean value is obtained by summing all possible 
values of j and k (100 points in this case). Also its dispersion is calculated. The 
maximum relative dispersion corresponding to Fig. 14a was 0.0013% for i= 4. 
Memory requirements are 85 bytes per cell and running time was 40.1 s per cycle. 

Using the same number of cells and the same “asymmetric” choice of variables, 

581/91/Z-9 
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FIG. 13. Same solution as Fig. 11 but taken an appropriate mean value for vertices velocities (see 
text). 

Eqs. (9~( lo), but the volume calculated from the vertices positions [ 141, a slightly 
different solution was obtained (see Fig. 14b), a bigger relative dispersion is 
observed (for i = 1 it reaches 12%), and the calculation was g 20% slower because 
the volume equation of Ref. [14] requires more FLOPS than Eq. (13). 

An attempt to use a symmetric choice that violates Eq. (14) (i.e., p, = 
$(Pi,j,k + Pi- l,j,kh ‘0 = iCVi,j,k + vi- I,j,k), etc.) and, using the same time integration 
method, ended in a “disaster”: instabilities developed and the calculation was 
interrupted. 

Increasing the number of cells from 2000 to 28,000 (70 x 40 x lo), a better 
convergence to the 1D solution is achieved. Figure 14c shows the mean density at 
t = 0.05, practically the same as that obtained with the 1D code (see Fig. 5b). The 
maximum relative dispersion was 0.0026% for i= 10. 

7. CONCLUSIONS 

Harlow [ 151 has pointed out that when adapting the differential equations to the 
discrete ones it is important to preserve, in first place, the physical principles that 
formed a basis for the equations. In the present work, by preserving the 
thermodynamic relation for internal energy (through the choice for the surface 
magnitudes given by Eqs. (9~(lo), i.e., the velocity from the cell “ahead” and the 
pressure from the cell “behind”), good results were obtained. The “asymmetric” 
choice led to a simple set of equations, where boundary conditions are easily 



3D LAGRANGIAN FOR FLUID DYNAMICS 379 

107 

d- 

6- 

e 
4' 

2- 
#.' 

‘” 
. * . 

. . 
l ‘. 

.  

. 
. 

. . 
. 

I 
OO 

I I I I 4 
02 a4 OB OEl 1 

R 

04 
lo- 

g - *. 
5 

. 

6- 
. 

l 

e **. 

4- ** 
. 

l .  

2- .  

, . *  .  

OO 

I  I  1 I  I I  

02 0.4 0.6 oa 1 

R 

(4 
10 

a II 

e 6- 1 . 4- =. ‘* 
2- ' 

‘+ 
"0. . '*a.. 

'0. 
OO I 1 , . , 4 

02 a4 ob 0.6 1 

R 

FIG. 14. Mean density as a function of the position for each value of the index i: (a) 2000 mesh point 
at r = 0.0545; (b) same as (a) but the volume being calculated from vertices position [14]; (c) 28,000 
mesh point (70 x 40 x 10) at t = 0.05. 
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imposed and, together with a simple temporal integration scheme (a predictor- 
corrector method, explicitly predicted), a stable and fast code was written. 

Although, in a non-uniform mesh the method is less accurate than other 
methods, it exhibits some important features: it retains the advantages of the sided 
methods over the centered ones for imposing boundary conditions, it preserves the 
simplicity of the explicit methods (a fact particularly useful to vectorize it), and it 
tits on a PC working with up to 6ooO mesh points. 

Finally, it is possible to use body-fitted coordinates [16] for defining the initial 
mesh and then integrating the equations in Cartesian coordinates without needing 
coordinate transformations. 
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